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Abstract

Due to the growing pace of life, stress became one of
the major factors causing health problems. We have devel-
oped a framework for measuring stress in real-life condi-
tions continuously and unobtrusively. In order to provide
meaningful, useful and actionable information, we present
stress information, derived from sensor measurements, in
the context of person’s activities. In this paper, we de-
scribe our framework, discuss how we address arising chal-
lenges and evaluate our approach on basis of the field stud-
ies we have conducted. The main results of the evaluation
are that the results of long-term measurements of stress re-
veal people information about their behavioral patterns that
they perceive as meaningful and useful, and trigger their
ideas about behavioral changes necessary to achieve a bet-
ter stress balance.
Keywords: stress monitoring; health and wellbeing; self-
awareness; sensor technologies; skin conductance

1. Introduction

Recent statistics indicate the great impact of stress-
related problems on individual lives and on the economies
of different countries, making stress a pressing issue with a
need for practical solutions. In the 2000 European Working
Conditions Survey (EWCS) [11], work-related stress was
found to be the second most common work-related health
problem across the EU. In the Netherlands, 1 out of 7 dis-
abled gets his condition because of stress at work (TNO Sur-
vey 2006).

Stress is experienced by people every day and is intrinsi-
cally related to the interplay between the environment and
the person [8]. The appreciation of being over-stressed of-
ten comes too late, when health problems already manifest
themselves: people’s ability to recall, recognize and un-

derstand their stress may be hampered by their life style,
with multiple tasks and responsibilities encountered every-
day. Therefore, we aim at creating a framework allowing
people to discover their stress reaction patterns using un-
obtrusive monitoring technologies.

Current approaches to stress monitoring are mostly
based on applying questionnaires or carrying out individ-
ual/group meeting with psychologists. Questionnaires can
be experienced as quite obtrusive and they rely mainly on
people’s ability to accurately recall their experiences. In
practice, however, our memory does not reflect our experi-
ences equally and is biased towards most recent events and
abnormalities. Individual/group meetings with a psycholo-
gist can be very effective, but are very costly both in terms
of money and time.

The physiological signals of stress, as reflected by
changes in blood pressure, heart rate, pupil dilation, sweat
gland activity, reflected in skin conductivity, can be objec-
tively measured in unobtrusive ways using modern sensor
technology. The rich body of research in this area indi-
cates that these measurements can be effectively used for
stress detection (see [14] for an overview). Continuous,
sensor-based monitoring registering stress-related signals
resolves the problem of memory bias and provides an objec-
tive record of one’s stress levels. The context information
about the life events of the person is nowadays omnipresent
due to the use of digital calendars, social media, emails, logs
of phone calls, etc. Our hypothesis is that collecting sensor
data for prolonged periods and presenting it in relation to
digital life data enables the user to discover personal stress
and relief patterns.

To test our hypothesis we built a framework collecting
and interpreting a variety of data to provide the user with
information about the stress experienced in relation to the
context in which it was experienced. We conducted field
studies with user groups at two organizations to evaluate the
feasibility and efficiency of our approach. In our studies we
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used DTI-2, a sensor wristband developed by Philips Re-
search [15] for continuous unobtrusive monitoring of phys-
iological signals and environmental conditions (skin con-
ductivity, skin temperature, ambient temperature and light-
ings, 3D acceleration), allowing to estimate experienced
stress level. We generated visual representations relating
the stress levels of a user to different aspects of his/her daily
activities, as specified in the digital calendar, based on the
data from several weeks of study. The evaluation with users
provides us with evidence in favor of our hypothesis, since
users were able to discover stress patterns they were not
aware of but the validity of which they estimate as very
likely; they want to test it by taking actions which, they
expect, will result in breaking these patterns and achieving
a better stress balance.

Unlike our work, most of the works in the area of stress
detection were performed in lab conditions, where the en-
vironment is strictly controlled, the stressful conditions are
administered artificially and, as a consequence, do not nec-
essarily conform to the ones experienced in real life. The
measurements in lab settings are short-term and mostly
static; almost all the personal, natural context of experienc-
ing stress is removed.

Recently, there were several attempts to detect stress in
real-life settings as well. In [1], we described the ideas for
a framework for real-life stress monitoring, aiming at stress
prediction and coaching, and the results from a pilot field
study, backed by the findings on stress pattern discovery [2]
in the sensor measurements performed in real life condi-
tions. From the other approaches we are aware of, Affective-
Health1 and AffectAura [9] are the ones with the goals most
close to ours. AffectiveHealth is based on a live recording
of a number of physiological signals and providing the user
with a visualization of the estimated stress level in the form
of a dynamic spiral [13]. This approach does not provide the
user with the context in which stress has been experienced,
relies on the user’s memory and interprets time as a linear
dimension only. This limits the possibilities of discovering
the relation between stress and other dimensions, like e.g.
topics of meetings, people involved in those meetings, days
of the week, time of the day. The AffectAura project also
aims at emotion detection in real life environments. In this
setting, although real-life, the amount and form of sensors
makes the solution applicable only to office workers spend-
ing most of their time in front of their computer, and not
applicable for occupations like teachers, managers, doctors,
nurses, etc. Finally, there are some works focusing on one
specific occupation, like drivers (see e.g. [3, 12]). Unlike
occupation-specific settings, we aim at a solution applica-
ble for a broad range of occupations.

The rest of this paper is organized as follows. In Sec-

1www.sics.se/ah

tion 2, we describe our approach. Section 3 provides the
procedure used for the interpretation of the stress data. In
Section 4, we discuss the conducted studies and the conclu-
sions drawn from the evaluation of the study results by the
users. Finally, in Section 5, we summarize our approach
and its future potential.

2. Approach

Our approach is based on continuous unobtrusive mea-
surement of stress for a period of time that would be long
enough to reveal useful patterns related to life events of the
user. Continuous measurement allows for capturing reac-
tions to different events, avoiding the pitfalls of approaches
based on taking the “snapshots” of stress picture. Since
we aim at an unobtrusive solution applicable in most of
the practical settings, we have chosen for three means of
data acquisition: 1) a wristband producing continuous sen-
sor measurements; 2) a calendar application for collecting
information about activities in time; and 3) a short ques-
tionnaire for collecting subjective feedback (modified Self
Assessment Manikin questionnaire) (see Figure 1).

The wristband we use – The Discrete Tension Indicator
(DTI-2), developed by Philips Research – is an unobtrusive,
wearable device that combines multiple sensors measuring
skin conductance, 3D acceleration, band temperature, skin
temperature and ambient light (see Figure 1). Skin con-
ductance, as measured by DTI-2, turns out to reflect stress
reactions well enough to use it as basis for estimations of
the stress levels of a person [15] (note that we are currently
interested not in precise up-to-seconds timing of stress re-
action but rather in general patterns of stress and relaxation
related to different facets of a person’s life). Acceleration
measurements on a wrist allow for activity recognition, thus
supplying context information. We ask the users to wear the
device on their dominant hand, since that allows for a better
recognition of certain activities, like writing. A wrist-worn
device is perceived by the majority of our users as more
comfortable than solutions such as chest belts for heart-rate
monitoring, and not violating privacy, which is often the
case with cameras used for facial expression analysis. The
measurements are stored by the device on an internal SD
card, and they can also be streamed live to a receiving sta-
tion via a Bluetooth wireless link, which makes it appropri-
ate for run-time feedback to the user, when desirable.

Since we are interested in patterns of stress/relaxation re-
lated, initially, to events at work (what, when, where, with
whom, etc.), we make use of calendar information, devel-
oping further the ideas we proposed in [1]. In that work
we used calendar information from MS Outlook supplied
with the information about subjective stress levels that the
users entered using categories of events (a standard option
in MS Outlook, allowing the user to define his/her own cate-
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Figure 1. Our information sources: DTI-2 sen-
sor wristband, calendar, questionnaire

Figure 2. Raw sensor signal along with labels
resulting from analysis.

gories). However, this approach triggered privacy concerns
for a number of users, as calendars are shared within orga-
nizations. Therefore, we now provide a custom-made cal-
endar application as part of our solution. Our calendar ap-
plication can be used as a stand-alone calendar for the users
who do not use other calendar applications, and it can be
integrated with other calendars. Currently, we support auto-
matic extraction of schedule information from MS Outlook.
Similar plug-ins can be easily created for other applications
(e.g. Google calendar, MacOSX iCal). The advantages of
a separate calendar application lie in a better protection of
users’ privacy, seamless integration with the measurement
device, and in possibilities for richer communication with
the user through a customized GUI.

To collect subjective user feedback, we supply our appli-
cation with an option for the user to indicate his/her state in
relation to a calendar event on four dimensions – Valence,
Arousal, Energy and Dominance – on a five-point scale, and
give additional comments in a free form. We added the en-
ergy dimension to the three dimensions of the Self Assess-
ment Manikin questionnaire [5] in order to allow for identi-
fication of personal fatigue-related patterns.

In order transform the raw data to the form which is
meaningful to the user, we align the data along the time
line and process it to obtain useful labels (Figure 2); the
processed data form then the input for our visualization tool
allowing us to generate views relating stress to different as-
pects of events occurred during the time period under ob-
servation (see Figure 4).

3 Data Analysis

Sensor measurements obtained from field trials suffer
from artifacts caused by occasional movements of the de-
vice on the wrist, excessive motion, electrical artifacts and
other sources [4]. Although most artifacts can be prevented
in signals recorded in controlled experimental conditions,
real-life signals need proper filtering. In order to avoid mis-
interpretation, we use a conservative strategy, rather disre-
garding the signals suffering from any artifacts than trying
to retrieve interpretations that might be incorrect.

The skin conductance measurements can be decomposed
into a phasic, fast changing component called Electroder-
mal Response (EDR) and a tonic, slow changing component
called Electrodermal Level (EDL). Due to the long-term set-
ting of our studies and the battery life time, decreasing with
the increase of sampling frequency of the device, the record-
ings were made with 2Hz sampling frequency, which is suf-
ficient for estimating EDL, but may not be enough for sepa-
rating the tonic (EDL) and phasic (EDR) components of the
signal [4]. Therefore, we focused mainly on estimating the
EDL level as an indicator of emotional arousal.

We apply the following procedure to produce estimations
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Figure 3. Translating the raw GSR signal into
discrete arousal categories

of the stress level from sensor data (see Figure 3):

1. Remove the first 15 minutes and the last 10 seconds of
the series of skin conductance measurements, since the
sweat level in the skin gets adjusted to the new situa-
tion (the device put on) at the beginning of the mea-
surement and there are, likely, movement artifacts just
before the removal of the device from the wrist.

2. Remove signal affected by losing contact with skin:
For each 5 seconds window we calculate the ratio of
lost/overall signal. As lost signal, we consider reg-
istered values of skin conductance below 0.001µS,
which is below realistic values. In case this ratio is
above 0.9, we remove the signal for the whole window,
based on the results from [10].

3. Identify and remove anomalies: We use the shape char-
acteristics of a genuine skin conductance response de-
scribed in [4] to identify spikes in the signal that can-
not correspond to genuine changes in skin conductance
values. Based on experimental results, we set the max-
imal possible increase of the signal value to 20% per
second and the maximum decrease to 10% per sec-
ond and eliminate those (sequences of) samples that
do not meet these criteria, going in the forward and
the backward directions. Based on visual inspection
of the signal, we established that this approach accu-
rately removes positive and negative spikes that result
from artifacts.

4. Smooth the signal: The slow changing component of
the signal (EDL) can already be determined from time

windows starting from 10–30 s [4]. We smooth the
signal using a moving median filter for a window size
of 1 minute, hence being a bit more conservative than
the minimum recommended time interval to limit the
influence of possible remaining artifacts. Since part of
the signal within the window could have been removed
as a result of filtering, we only take into consideration
windows with at last 40% of the signal remaining.

5. Define a slicing of skin stress estimation values into
five arousal categories in order to ease the interpreta-
tion by the user: To take into account differences in
skin conductance between people, we define this slic-
ing on the basis of the personal histogram of smoothed
EDL values for the whole period of monitoring. We
assume that, in the monitoring period, the person had
at least one period of being calm for at least 5 min-
utes. We use the min-max algorithm for overlapping
5 minutes windows to find this most calm period and
the maximal EDL value in it, denoted as `0. Based on
the 300 bins histogram, we define the `5 value as the
value before the first empty bin above `0. Taking into
account that the fluctuations of skin conductance in the
very calm states are low, we define δ as (`5 − `0)/4.5,
and `1 = `0 + 0.5δ, `2 = `1 + δ, `3 = `2 + δ and
`4 = `3 + δ. We classify the values below `1 as “very
low arousal”, the values from [`1; `2) as “low arousal”,
. . . , and the values above `4 as very high arousal.

Note that the reported influence of the ambient tem-
perature on EDR (Skin resistance level) is at a level of
3%/0C [6], and in case the fluctuations in the temperature
are significant enough, a temperature correction should be
applied before deriving the arousal levels.

4. Evaluation

To evaluate our approach, we organized a field trial with
staff members of a university. 10 users were asked to wear
the DTI-2 wristband at least during working hours for a pe-
riod of 4 weeks. Calendar data was imported from their
Outlook calendar to our calendar application, as described
in Section 2. The users uploaded measurements from DTI-
2 to our server remotely once a day. The participants were
not given any view on their data before the end of the study.
At the end of the study, we provided them with views on
their data and performed a qualitative evaluation in form of
a semi-structured interview. The main purpose was to de-
termine if the generated views are 1) meaningful, 2) useful
for the user, and 3) triggering actionable conclusions on im-
proving stress balance.

We used LifelogExplorer [7] to generate views on the
collected data. Figure 4 shows a view in which circles
(“group” chosen in the menu) represent subjects of the
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Figure 4. An example of a view with aggregation on subjects of calendar events and filtering used

meetings in the user’s calendar, with the size of a circle re-
flecting the total amount of time spent in meetings on this
subject. The pie chart inside the circle shows the time distri-
bution of estimated arousal levels. The human-like figurines
represent the people present at the specific activity (the view
is based on real data, but, for privacy reasons, all subjects
and names have been changed). Also other dimensions, like
location, can be chosen instead of the subject dimension.

Note that information about users lives is inherently
incomplete, e.g. information about meeting participants
might be missing (resulting in isolated circles). Therefore,
the user’s knowledge remains indispensable for interpret-
ing the views. Moreover, the views can only suggest corre-
lations, but they cannot reveal causalities. It is up to the
user to judge whether there can be a causal dependency
between certain things and check it by adapting his be-
haviour/schedule/. . . .

To determine whether the data indeed reflects the percep-
tion of a person, we presented a number of views (with dif-
ferent choices of dimensions for circles and figurines) and
asked to comment on the value of these views.
Data is meaningful: In most cases the data has proven to
reflect participants perception about their stress levels: “It
is immediately visible that in the week . . . there is less stress,
less activity than in other weeks.”
“The data that I see about the performance evaluations.
The stress level in these job performance evaluations says
much more about what the performance evaluation really
was like. Much more than what is written on the paper. (...)
It does not lie! (Laugh!) The report may lie, but the stress

level does not lie.”
In order to quantitatively evaluate the extent to which the

presented information confirms user perception, we picked,
at random, some of the individual aggregations presented in
each view. We asked the user to relate to these aggregations
one-by-one. Due to extent of the data and time constraints
during the interview, we referred only to ∼ 58% of all the
aggregations present in the views. Out of these ∼ 91% were
correctly reflecting the perception of the user, i.e. ”green”
was described as calm or relaxing, and ”red” as stressful or
engaging.
Provides new information: In many cases, the data not
only confirms the perception of our participants, but also
provides them with new information: “For instance, about
the . . . meetings. I really learned that the experience I have
there is indeed reflected in the stress levels. It is an eye
opener for me.”
“I learned that teaching through video conferencing is re-
ally different from teaching in class.”
Triggers actionable advices: Further, the self-reflection in
many cases triggers people to rethink their behavior: “I
learned which things on . . . are stressful and I perhaps
should relax and do something about that. That is very good
to see.” “I’d love to have more data, do this over a number
of weeks and see whether this pattern re-emerges.”

5. Conclusion

The increase in battery life, storage capacity and minia-
turization of wearable sensors has made real time recording
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of various bodily responses feasible. Many solutions are
already on the market, ranging from simple accelerometer-
based ones, like Jawbone UP2 and DirectLife3 offering ac-
tivity intensity recognition, to solutions that measure skin
conductance, heart rate and body temperature, like Affectiva
Q sensor4, Basis5, or BodyMedia armband6. Solutions such
as Noldus Face Reader7 record individual’s facial expres-
sions in order to perform automatic emotion recognition.
At the same time, pure software solutions can capture user
activities related to computer use, like Spector Pro8 and PC
Pandora9, recording the use of keyboard, mouse and dif-
ferent software tools. In the coming years, we expect these
technologies to make a step from the “quantified-self” seg-
ment of the market to a general consumer market, with sen-
sors being embedded into consumer products like watches,
shoes, etc. Therefore, it is the right time to develop methods
for transforming data produced by these sensors to informa-
tion the user can action upon.

In our approach, we monitor stress in relation to the
events of the everyday life. The results of such long-term
monitoring can be used by the person directly or can serve
as input for consultations with a psychologist. Confronting
people with quantitative information about their life can
trigger self-coaching. Moreover, the same monitoring tech-
nologies can be used to measure the short-term and long-
term effects of different stress coping strategies on the per-
son in question and thus help with choosing appropriate
ones.

Our field study shows that even using a limited number
of sensors we obtain data to provide users with information
about their behavioral patterns that they perceive as mean-
ingful and useful, and trigger their ideas about behavioral
changes necessary to achieve a better stress balance.
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